
June 8, 2020 Jason W. Wei

2.3 Transformers

As partially described above, RNNs face the following challenges:

1. Long-term dependencies are hard to learn (gradient vanishing).

2. Hidden states attempt to store information of any length into a vector of fixed size.

3. Recurrence prevents parallel computation during training.

The transformer (Vaswani+ ’17) is a sequence to sequence model based entirely on attention. In a trans-
former, the encoder uses self attention to generate encodings, and the decoder attends to both input sequences
and already outputted words. Transformers use several tricks:

• Self-attention. In vanilla attention, the query is the last decoder state and the keys and values
are both the encoder states. In self-attention, all keys, values, and queries come from the output of
the previous layer in the encoder, and each position in the encoder attends to all positions in the
previous layer of the encoder. With self-attention, the encoder in a transformer produces a sequence
of embeddings, with each embedding capturing the original word and information from other words
that were attended to.

• Multi-headed attention. Instead of having a single attention function, we can use multiple attention
heads so that the model can jointly attend to information from different representation subspaces at
different positions (with a single head, averaging inhibits attending to different representations). You
can think of each head as a filter or feature map in ConvNets.

• Normalized dot-product attention. In practice, dot-product attention is fast and more space
efficient than using a single-layer neural net, and so given the matrices Q, K, and V , we use

attention(Q,K, V ) = softmax(
QKT

√
dk

)V . (21)

Graham Neubig, however, notes that this dot-product attention is a bit of a misnomer, since, as seen in
Figure 2 (right) in their paper, the keys, values, and queries are multiplied by corresponding matrices,
and so it is much more like bilinear dot-product attention.

• Positional encodings. Because transformers do not use recurrence or convolution, we must inject
some information about the position of tokens into the sequence. We add positional encodings of the
same dimension as word embeddings based on sine and cosine functions of different frequencies.

• Layer normalization. Computing a gradient requires knowledge of both the previous (layer below)
and current activations (layer above), and so there are many interdependencies with layers (e.g., you
changed layer l based on l + 1, but now you just updated l + 1). With layer normalization, we
normalize the values in each layer to mean 0 and variance 1. This trick reduces covariate shift (gradient
dependencies between each layer), helping the model to converge in fewer iterations.

• Teacher forcing. During test time, we still must generate each output sequentially. For training,
however, we can employ teacher forcing, where we assume we have already gotten all previous outputs
correct, allowing us to train in parallel.

12


	Key Concepts
	Logistic Regression
	Improving Deep Neural Nets
	Bias and Variance
	Regularization
	Activation functions
	Initialization
	Optimization algorithms
	Q & A

	Deriving Backprop
	Forward Pass
	Backward Pass

	k-means Clustering
	Convolutional Neural Networks
	Basic ConvNets
	ResNet
	Inception Net
	Q & A

	Recurrent Neural Networks

	Natural Language Processing
	Word Embeddings
	Attention
	Transformers
	BERT


