1 Key Concepts

1.1 Logistic Regression

The simplest formulation of a neural network is logistic regression.

Problem. Given m training examples with n_x features each, we want to classify each test example as 0 or 1. Therefore, X is shape (n_x, m) and y is shape (1, m). Given some x, we want to calculate $\hat{y} = P(y = 1|x)$.

Solution. Create a weight matrix $w \in \mathbb{R}^{n_x}$ and $b \in \mathbb{R}$. We can calculate $z = w^T x + b$, and $\hat{y} = \sigma(w^T x + b)$, where $\sigma(z) = \frac{1}{1+e^{-z}}$.

Now, we define our loss function, applied to a single example, as

$$L(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})) .$$
(1)

Observe that when y = 0, small \hat{y} minimizes the loss, and when y = 1, large \hat{y} minimizes the loss. Over the entire training set, we have the cost function

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) .$$
⁽²⁾

We then use gradient descent to find the optimal values for w and b. For a single w parameter, for example, we update it with

$$w := w - \alpha \frac{dJ(w)}{dw} \; .$$

We can intuitively think about how this works. If some w is too large, then $\frac{dJ(w)}{dw}$ will be positive, since w is greater than the optimum w and J(w) is greater than the optimum J, so the slope is positive. Therefore, when we update with $w := w - \alpha \frac{dJ(w)}{dw}$, the new w will be smaller and closer to optimum w.

Q & A.

1. Why don't we use the squared error loss function $L(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$? It turns out that squared loss forms a non-convex optimization problem with multiple local optima. Cross-entropy loss, on the other hand, is a convex optimization function.