Instruction Tuning with FLAN

Finetuned Language Models are Zero-Shot Learners

Jason Wei Maarten Bosma Vincent Zhao Kelvin Guu Adams Yu Brian Lester Nan Du Andrew Dai Quoc Le
“Instruction tuning” finetunes a language model on a collection of NLP tasks described using instructions.

We instruction-tune a 137B pretrained LM and call the resulting model FLAN (for Finetuned Language Net).

Instruction tuning helps the model perform tasks it wasn’t trained on, giving the model a range of applications.
Input:
- Movie review: This movie is the best RomCom since Pretty Woman.

Did this critic like the movie?

OPTIONS
- yes
- no

FLAN output:
- yes
Sentiment Analysis

Input:
- Movie review: This movie is the best RomCom since Pretty Woman.

Did this critic **dislike** the movie?

OPTIONS
- yes
- no

FLAN output:
- no
Input:
- What is Vincent Zhao’s profession?

FLAN output:
- actor
- martial artist
- kung fu actor and martial artist
Question Answering

Input:
- What is Vincent Zhao’s profession?

Answer in Chinese.

FLAN output:
- 演员
- 导演
- 演員
Rule-based tasks

Input:
- Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."

Change to past tense.

FLAN output:
- Jason Wei was reading the paper "Finetuned Language Models are Zero-Shot Learners."
Rule-based tasks

Input:
- Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."

Change to the verb to eat.

FLAN output:
- Jason Wei is eating the paper "Finetuned Language Models are Zero-Shot Learners."
Rule-based tasks

Input:
- Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."

Change to passive voice.

FLAN output:
- The paper "Finetuned Language Models are Zero-Shot Learners" is being read by Jason Wei.
Rule-based tasks

Input:
- Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."

Change the subject to Dipanjan Das and the paper to “BERT Rediscovers the NLP Pipeline”.

FLAN output:
- Dipanjan Das is reading the paper "BERT rediscovers the NLP pipeline".
Recommendations

Input:
- Recommend activities to do on a sunny weekend in Mountain View.

FLAN output:
- Visit the Computer History Museum
- Hiking
- Picnic
- Go to the beach
- Visit Winchester Mystery House
- Wineries
- Bike ride
FLAN can **generate training data for downstream classifiers**. Maybe you want to classify new intents.

Input:
- Generate utterances with the intent "**get COVID vaccine**"

FLAN output:
- I would like to get the covid vaccine.
- I would like a COVID vaccine as soon as possible
- Can I get a COVID vaccine as a preventative measure?
- get COVID vaccine for a five year old
- where is a center for COVID vaccine testing?
Style transfer

Input:
● "I guess I need to do laundry."

Rewrite the above sentence in a Shakespearean style.

FLAN output:
● To my mind, verily, I suppose 'tis time, I wash my clothes.
● Mine eyes and ears and tongue declare me idle; and yet it is true I guess, By my garments, that I need to do laundry.
● Lo my duty now calls To thee, to wash this body's clothes.
Or maybe you’re like James Joyce and you like to make up words.

Input:
- Make up a new word that means "when bananas shower from the sky"

FLAN output (cherrypicked):
- Bananation
- Banana shower
- Banania
- Bananafall
- Bananada
The sun had barely risen when the carrots were taken from their beds and brought to market. They'd had no time to gather their strength. They smelled of earth, their greens still wet from the dew. At first no one was interested in buying them. But one man finally reached out and picked up one of the carrots. "I'll take this one!" he cried out. "It's for my mother! I'll pay you well for it." The man took the carrot to the cashier, eager to get it home to his mother. He was careful to wrap it carefully so that it wouldn't get bruised or dirty. He hurried home, and when he saw his mother, he gave her the carrot. "Is this one of the ones I grew?" she asked, her voice wavering with emotion. "Yes, mother," he replied. "It is, dear." The man left the carrot with his mother and hurried back to market. His mother was very sick, and he was afraid she wouldn't last much longer. He needed to buy all the carrots in market so that none would be left when she was gone.
Failure cases

Input:
● Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."

What is the second word in the sentence?

FLAN output:
● paper
● Jason Wei
● learners
● language

Input:
● What is Vincent Zhao’s profession?

Answer in Danish.

FLAN output:
● Hvad er Vincent Zhao’s erhverv?
● Hvad er Vincent Zhao’s beskæftigelse?
Talk Outline

1. Background and motivation
2. Training FLAN & experimental setup
3. Results on various tasks, ablation studies
Motivation

(A) Pretrain–finetune (BERT, T5)

- Pretrained LM → Finetune on task A → Inference on task A
 - Typically requires many task-specific examples
 - One specialized model for each task

(B) Prompting (GPT-3)

- Pretrained LM → Improve performance via few-shot prompting or prompt engineering → Inference on task A
 - Few-shot prompting
 - Prompt tuning
 - Pretraining objective (Language modeling)
 - Downstream inference (NLP task)

“This movie sucks.” This movie review is {negative, positive}.
Can we use “a little bit” of supervision to teach the model to perform many NLP tasks?

i.e., zero-shot!
“Instruction tuning”—finetuning a language model on a collection of tasks described via instructions—improves the zero-shot performance of language models on unseen tasks.
NLP tasks and datasets

- 62 NLP datasets
- 12 “task clusters”

<table>
<thead>
<tr>
<th>Natural language inference (7 tasks)</th>
<th>Commonsense (4 tasks)</th>
<th>Sentiment (4 tasks)</th>
<th>Paraphrase (4 tasks)</th>
<th>Open domain QA (3 tasks)</th>
<th>Struct to text (4 tasks)</th>
<th>Translation (8 languages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANLI (R1-R3)</td>
<td>CoPA</td>
<td>IMDB</td>
<td>MRPC</td>
<td>ARC (easy/chal.)</td>
<td>CommonGen</td>
<td>ParaCrawl EN/DE</td>
</tr>
<tr>
<td>CB</td>
<td>HellaSwag</td>
<td>Sent140</td>
<td>QQP</td>
<td>NQ</td>
<td>DART</td>
<td>ParaCrawl EN/ES</td>
</tr>
<tr>
<td>MNLI</td>
<td>PiQA</td>
<td>SST-2</td>
<td>PAWS</td>
<td>TriviaQA</td>
<td>E2ENLG</td>
<td>ParaCrawl EN/FR</td>
</tr>
<tr>
<td>QNLI</td>
<td>StoryCloze</td>
<td>Yelp</td>
<td>STS-B</td>
<td></td>
<td>WEBNLG</td>
<td>WMT-16 EN/CS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reading comp. (5 tasks)</th>
<th>Coreference (3 tasks)</th>
<th>Misc. (7 tasks)</th>
<th>Summarization (11 tasks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoolQ</td>
<td>DPR</td>
<td>CoQA</td>
<td>AESLC</td>
</tr>
<tr>
<td>OBQA</td>
<td>Winogrande</td>
<td>TREC</td>
<td>Multi-News</td>
</tr>
<tr>
<td>DROP</td>
<td>CosmosQA</td>
<td>QuAC</td>
<td>AG News</td>
</tr>
<tr>
<td>SQuAD</td>
<td>ReCoRD</td>
<td>CoLA</td>
<td>Newsroom</td>
</tr>
<tr>
<td>MultiRC</td>
<td>WSC</td>
<td>WIC</td>
<td>CNN-DM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math</td>
<td>Opin-Abs: iDebate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fix Punctuation (NLG)</td>
<td>Opin-Abs: Movie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gigaword</td>
<td>AESLC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Translation (8 languages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParaCrawl EN/DE</td>
</tr>
<tr>
<td>ParaCrawl EN/ES</td>
</tr>
<tr>
<td>ParaCrawl EN/FR</td>
</tr>
<tr>
<td>WMT-16 EN/CS</td>
</tr>
<tr>
<td>WMT-16 EN/DE</td>
</tr>
<tr>
<td>WMT-16 EN/FI</td>
</tr>
<tr>
<td>WMT-16 EN/RO</td>
</tr>
<tr>
<td>WMT-16 EN/RU</td>
</tr>
<tr>
<td>WMT-16 EN/TR</td>
</tr>
</tbody>
</table>
Templates

We generate many natural instruction templates for each task.
Evaluation splits

We evaluate on “unseen” / “zero-shot” tasks where no datasets from that task were seen during instruction tuning.
Classification with “options”

For classification tasks, we teach FLAN to return one of several “options”
FLAN Training details

- 137B parameter pretrained checkpoint
- Instruction tune for 30k steps on 62 datasets spanning 12 task clusters
Summary of results

- 25 datasets spanning NLI, reading comprehension, closed-book QA, commonsense reasoning, coreference resolution, and translation
- Baselines: Base LM, GPT-3 175B

😊 FLAN almost always outperforms Base LM
😊 On 20 of 25 tasks, zero-shot FLAN outperforms zero-shot GPT-3
😊 On 10 tasks, zero-shot FLAN even outperforms few-shot GPT-3
Results: NLI, reading comprehension, closed-book QA

- Natural Language Inference
 - ANLI R1
 - ANLI R2
 - ANLI R3
 - CB
 - RTE

- Reading Comprehension
 - BoolQ
 - MultiRC
 - OBQA

- Closed-Book QA
 - ARC-e
 - ARC-c
 - NQ
 - TriviaQA

Graph showing zero-shot performance with markers for GPT-3 175B, Base LM 137B, FLAN 137B, and Supervised model.
Ablation study: number of instruction tuning clusters

Adding additional task clusters to instruction tuning improves zero-shot performance on held-out task clusters.
Ablation study: scaling laws

As expected, instruction tuning improves performance on seen tasks

Performance on unseen tasks, on the other hand, only improves with sufficient model scale.
Ablation: templates per task

Curiously, more templates per dataset did not help much.
Further analysis: few-shot prompting

Few-shot prompting is a complementary way of improving performance with instruction tuning.

Example of few-shot prompt:

Does the following review have a positive or negative opinion of the movie?

<review>
Negative.

Does the following review have a positive or negative opinion of the movie?

<review>
Positive.

Does the following review have a positive or negative opinion of the movie?

<review>
Further analysis: prompt tuning

FLAN responds better to continuous inputs from prompt tuning than base LM.
Multitask Prompted Training Enables Zero-Shot Task Generalization

<table>
<thead>
<tr>
<th>Name</th>
<th>GPT-3</th>
<th>T0</th>
<th>FLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>175B</td>
<td>11B</td>
<td>137B</td>
</tr>
<tr>
<td>Multitask supervision</td>
<td>Implicit</td>
<td>Explicit</td>
<td>Explicit</td>
</tr>
<tr>
<td>Architecture/pretraining</td>
<td>Decoder/LM</td>
<td>Encoder-decoder/MLM+LM</td>
<td>Decoder/LM</td>
</tr>
<tr>
<td>Prompts</td>
<td>N/A</td>
<td>170 datasets*</td>
<td>62 datasets</td>
</tr>
<tr>
<td>Performance</td>
<td>Intriging</td>
<td>Only available for NLI, Story completion, coreference, and some of BIG-bench, but also intriguing</td>
<td>Better than GPT-3 on average</td>
</tr>
</tbody>
</table>

* Colin Raffel/BigScience did something similar recently, on Oct 15 2021

- Victor Sanh*
 Hugging Face
- Albert Webson*
 Brown University
- Colin Raffel*
 Hugging Face
- Stephen H. Bach*
 Brown University
- Lintang Sutawika
 BioScience
- Zaid Alyafeai
 KFUPM
- Antoine Chaflin
 IRISA, IMATAG
- Arnaud Stiegler
 Herosciences
- Arun Raja
 A*STAR
Conclusions

- Finetuning a language model on a collection of tasks allows it to follow instructions for a new task.
- This instruction-tuned language model has better zero-shot performance.
- Number of instruction tuning clusters and model scale are crucial.
Questions?
<table>
<thead>
<tr>
<th>Input</th>
<th>T0pp Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."</td>
<td>Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."</td>
</tr>
<tr>
<td>Change to past tense.</td>
<td></td>
</tr>
<tr>
<td>Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."</td>
<td>eat</td>
</tr>
<tr>
<td>Change the verb to eat.</td>
<td></td>
</tr>
<tr>
<td>Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."</td>
<td>Jason Wei is reading the paper "Finetuned Language Models are Zero-Shot Learners."</td>
</tr>
<tr>
<td>Change to passive voice.</td>
<td></td>
</tr>
<tr>
<td>Recommend activities to do on a sunny weekend in Mountain View.</td>
<td>Mountain View, California</td>
</tr>
<tr>
<td>Generate utterances with the intent "get COVID vaccine".</td>
<td>A nurse is giving a child a COVID vaccine.</td>
</tr>
</tbody>
</table>
Further analysis: data contamination

We do not find evidence that example overlaps with pretraining data affects the performance of FLAN.